The Association Between Platelets/Lymphocyte Ratio and Premature Rupture of Membranes

Abstract

Objectives: Premature rupture of membrane (PROM) refers to the spontaneous rupture of fetal membranes prior to delivery and the initiation of the labor. In addition, the early rupture of membranes can lead to several adverse complications for both the mother and the fetus. Therefore, the present study aimed to investigate the association between the platelet-to-lymphocyte ratio (PLR) and the premature rupture of the membrane in pregnant women.

Materials and Methods: This retrospective case-control study reviewed the files of 150 women with PROM matched with 150 spontaneous preterm labor (SPL) women at Al-Zahra hospital of Rasht during 2017-2018. Demographic data, complete blood cell count, PLR, maternal age, gestational week, gravida, parity, and birth weight were recorded, and finally, the obtained data were analyzed by SPSS, version 19.

Results: Based on the results, there was a statistically significant difference between maternal platelet count and PLR in these two groups (P = 0.0001). However, no significant difference was observed regarding maternal age, gravida, parity, and maternal lymphocytes count in PROM and control groups (P > 0.05). According to logistic regression analysis, a negative association was found respecting gestational age and PLR in the PROM group while a positive association was observed in the group without PROM regarding birth weight and PRL. In the receiver-operator curve diagram, the appropriate cut-off point for the PLR index for detecting PROM was determined as 142.2 with a sensitivity of 62.7% and a specificity of 63.3%.

Conclusions: In general, a significant association was found between PLR and PROM. Therefore, well-planned cohort studies are welcomed to find any prognostic role for this marker.

Keywords: Premature rupture of membranes, Association, Platelet-to-lymphocyte ratio

Introduction

The premature rupture of membrane (PROM) as a crucial risk factor for prenatal mortality and morbidity occurs in 3% of all pregnancies and is defined as an early fetal membrane rupture before labor initiation (1). In addition, as the main cause of preterm delivery, PROM is accompanied by some adverse effects for both the mother and fetus (2,3). Based on a systematic review conducted by Bond et al, expectant management was preferred when PROM diagnosis was confirmed with the absence of any contraindication for continuing the pregnancy. They further reported that this approach was most beneficial for both the mother and the baby. Accordingly, when this decision is made, close monitoring is highly vital for the fetus (4) since the risk of neonate and mother infection, sudden intrauterine death, neonatal jaundice, hypoxia, sepsis, intra-ventricular hemorrhage, and necrotizing enterocolitis may demonstrate an increase. In these conditions, anesthesiologists inevitably get more involved in neonatal resuscitation (5, 6). Although some predisposing risk factors such as abnormal vaginal discharge, history of caesarian section, previous PROM history of abortion (7), and temperature changes (8) have been described, the real responsible pathophysiologic mechanism of PROM remains unknown. Due to the significant adverse consequences of PROM, early diagnosis is extremely crucial for choosing an appropriate medical intervention in order to protect the mother and fetus from serious complications (9). Based on the evaluation of different inflammatory markers such as interleukin-6 and mean platelet volume, studies have demonstrated the significant role of inflammation while not always microbial parameters in this process. Based on their findings, sterile intra-amniotic inflammation is more common among women presenting PROM after 24 weeks of gestation (10-12). Furthermore, it has been highly discussed as a simple, inexpensive, and available marker and its prognostic role has been supported in various inflammation conditions. Evidence suggests that in chronic inflammatory conditions, megakaryocytic series...
proliferation tends to increase while lymphocyte count decreases due to the apoptosis phenomenon. Therefore, it is supposed that PLR raises during inflammatory conditions (13). Based on the literature review, limited data are available about the diagnostic role of PLR for the early diagnosis of PROM and have often focused on other conditions.

Objectives

Considering the advantages of PLR as an inflammatory marker and inadequate data in this field, this research was planned to investigate whether PLR has any association with PROM.

Methods

The protocol of this retrospective case-control study was approved by the Research Ethics Committee of Guilan University of Medical Sciences and was registered as IR.GUMS.REC.1398.038. Additionally, it took place at Al-Zahra hospital, which is a referral and academic center, during 2017-2018. A responsible medical student sorted out the files of 150 women with PROM and matched them with 150 spontaneous preterm labor (SPL) women who were admitted during the above-mentioned period. According to the documented data, a questionnaire was filled out, including data on age, gestational week, gravida, parity, and birth weight, followed by documenting the recorded complete blood count at the admission time. Eventually, PLR was calculated by dividing patients’ platelet count to lymphocyte count.

Inclusion Criteria

Women with the PROM and SPL admitted during the mentioned study period.

Exclusion Criteria

Patients suffering from any acute or chronic inflammatory conditions, hematologic disorders, malignancies, hepatic diseases, autoimmune disease, preeclampsia, any kind of fetal infection, and cases undergoing invasive interventions such as amniocentesis were excluded from the study. Files with incomplete data were excluded as well. Finally, the data between the two groups were compared based on the aim of the study.

Statistical Analysis

The data were analyzed by SPSS, version 19. Categorical variables were presented as frequencies and percentages. A Chi-square test was performed to compare categorical variables between the two groups. In addition, the Mann-Whitney U test or independent sample t test was used for comparing normally distributed continuous numeric variables. Eventually, receiver-operator curve (ROC) analysis was utilized to figure out the sensitivity and specificity of PLR values regarding predicting PROM, and $P \leq 0.05$ was considered statistically significant.

Results

In this study, patients were evaluated in two groups including pregnant women with (n = 150) and without (n = 150) PROMs. Patients’ baseline demographic and clinical features are shown in Table 1. Based on the results, there was no significant difference between the two groups in terms of age, gravidity, parity, and lymphocyte count ($P > 0.05$). Conversely, a statistically significant difference was observed between these two groups regarding maternal platelet count and the PLR ratio ($P = 0.0001$). The mean of the gestational week and the mean birth weight (gram) were 33.49 ± 2.67 and 37.98 ± 1.9, as well as 2305.8 ± 479 and 2912.2 ± 651 in pregnant women with PROM and those with SPL, respectively. According to logistic regression analysis, a negative association was found regarding gestational age and PLR in the PROM group (Table 2) whereas a positive association was observed in the group without PROM regarding birth weight and PRL (Table 3). Based on the ROC diagram which was used to detect PROM, the appropriate cut-off point for the PLR index was 142.2 with a sensitivity value of 62.7% and a specificity of 63.3%, which is an acceptable point and represents an association between PLR values and PROM (Figure 1).

Discussion

In general, it was mainly found that PLR was significantly linked to a higher risk of PROM, namely, the prenatal rupture of the membrane before the pregnant woman is in the labor. In our research, PLR was remarkably higher in the PROM, indicating a positive association between neonate weight and PLR in the PROM group. Conversely,

Table 1. Demographic and Clinical Characters of the Patients

<table>
<thead>
<tr>
<th></th>
<th>PROM</th>
<th>Control</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>28.38± 6.59</td>
<td>27.82± 4.88</td>
<td>0.404*</td>
</tr>
<tr>
<td>Gravida (number)</td>
<td>1.87±0.88</td>
<td>1.97±0.9</td>
<td>0.333*</td>
</tr>
<tr>
<td>Parity (number)</td>
<td>0.65±0.05</td>
<td>0.74±0.74</td>
<td>0.68*</td>
</tr>
<tr>
<td>Lymphocyte count (/ mm3)</td>
<td>1700±413</td>
<td>1795.3</td>
<td>0.178*</td>
</tr>
<tr>
<td>Platelet count (×1000/mm3)</td>
<td>160.8±34</td>
<td>131.2±40.2</td>
<td>0.0001*</td>
</tr>
<tr>
<td>PLR</td>
<td>265.5±55</td>
<td>226.3±52.2</td>
<td>0.0001*</td>
</tr>
</tbody>
</table>

Note: PROM: premature rupture of membranes; PLR: platelet-to-lymphocyte ratio.

*Independent sample t test; *Mann Whitney U test.
a negative association was observed between gestational weeks and PLR only in the SPL group. Our findings are in line with those of Toprak et al (13). It is noteworthy that the ongoing inflammatory process results in a higher rate of megakaryocytic series proliferation and thus relative thrombocytosis. In addition, lymphocyte count decreases in sustained inflammation due to the further occurrence of apoptosis phenomena. Up to now, PLR values have not been restricted to detect early PROM. Rather, these values have been investigated with promising results in several other conditions, and evidence indicates the adverse prognostic impact of PLR in malignancies and coronary artery diseases. For example, Bharadwaj et al demonstrated that PLR can be a rapid, simple, and available indicator for the early diagnosis of neonate sepsis and provides the opportunity for clinicians to appropriately manage these cases (14). Similarly, Koh et al found that PLR was an independent marker for the increased mortality risk in breast cancer (15). Likewise, Templeton et al reported a notable association between PLR and gastrointestinal cancer poor outcomes (16). In another study, Yüksel et al suggested that higher PLR values appear to be a high-risk factor for the severity of atherosclerosis (17). Contrarily, Serrano et al found no predictive role of higher PLR values in inflammatory conditions (18). Generally, an inflammatory pathophysiologic base with limited data has been strongly suggested for the PROM process. Further investigations are required considering the importance of the issue for both the health of the mother and the baby and the advantages of this marker.

Limitations
It was a single-center study with a small sample size. Furthermore, the investigated factors were restricted to those documented in the files due to the nature of a retrospective study. Accordingly, the findings should be generalized with caution, and future studies should consider the above-mentioned issues.

Conclusion
In general, the findings of this research revealed that the PLR was significantly associated with a higher risk of PROM. Therefore, in clinical practice, more attention should be paid to cases with PLR values higher than 142.2, especially when other PROM risk factors are detected as well. Accordingly, well-planned cohort studies are welcomed regarding finding any prognostic role for this marker.

Authors’ Contribution
Conflict of Interests
Authors declare that they have no conflict of interests.

Ethical Issues
We received ethical exemption status from the Research Ethics Committee of Guilan University of Medical Sciences (IR.GUMS.REC.1398.038).

Financial Support
This study received no funding.

Acknowledgments
We gratefully acknowledge the Anesthesia Research Center and Reproductive Health Research Center of Guilan University of Medical Sciences. This article was extracted from the M.D. thesis of Nazanin Hoseinzade Sanatkar. We also appreciate Ms. Jalile Massomi for editing this article.

References