
Introduction
Infertility is a big problem that many couples worldwide 
have to face. In fact, it is now affecting nearly 15% of 
couples that, according to the World Health Organization 
(WHO), (1) fail to achieve a clinical pregnancy after 12 
months or more of regular unprotected sexual intercourse.

A population based-study carried out by Agarwal et al 
to estimate male infertility distribution around the world, 
showed that the male factor distribution in infertility was 
between 20% and 70% and the proportion of infertile men 
was within the 2.5%-12% range (2). 

The traditional way of diagnosing male infertility is by 
determining the classical semen parameters, as described 
in laboratory guidelines defined by the WHO (1).

After semen analysis, normal semen parameters provide 
no firm conclusions to clinicians either about the fertility 
status of a patient or the outcomes of any infertility 
treatment. Various studies have demonstrated that 
abnormalities during the sperm chromatin organization 
may lead to male infertility (3-5) and may later influence 
the fertilization, the embryo quality and its development 
(6,7). This means that sperm DNA analysis with the 
standard semen analysis may help to reveal any hidden 

sperm DNA abnormality in infertile men with idiopathic 
infertility. In the light of the increasing body of evidence 
for DNA integrity and its importance for the ART 
outcome, many methods have been developed, within the 
last decade, to reveal any changes, such as fragmentation 
and the protamination, in the sperm chromatin status and 
maturity. But the use of such techniques as complementary 
biomarkers beside semen analysis is still controversial. 

Environmental and lifestyle factors, like nutrition, 
drinking alcohol, physical activity and tobacco smoke, 
play an important role in the aggravation of the idiopathic 
male infertility problem. 

In fact, exposure to external toxicants leads to different 
alterations during the various phases (mitotic, meiotic and 
post-meiotic) of spermatogenesis (8). As a matter of fact, 
current debate about these issues seems to confirm that 
the male fertility impairment is increasing and that this 
might indeed be associated with environmental factors 
and life-styles. However, in this study, we have focused on 
tobacco smoke and its effect on semen parameters, sperm 
DNA quality and clinical outcomes after intracytoplasmic 
sperm injection (ICSI) therapy. 
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Materials and Methods 
Study Design 
Semen samples were collected randomly from male 
partners of couples undergoing ICSI treatment. This 
was carried out in the laboratory of Biochemistry and 
Molecular Biology of Reproductive Medicine within the 
Department of Obstetrics and Gynaecology, the Women’s 
Hospital Saarland Clinic, Germany.

Smoking Evaluation
Ae participant who smokes more than one packet/day for 
10 years or 2 packets/day for 5 years was considered to be 
a heavy-smoker, and the participant who did not smoke 
was considered to be a non-smoker. According to this 
definition, patients were divided into the following two 
groups: heavy-smokers (n = 98) and non-smokers (n = 43). 

Sperm Processing
The samples were collected, by masturbation, after a 
minimum of 2 days and a maximum of 3 days of sexual 
abstinence.

The specimen container was kept on the heating 
stage or in the incubator (37°C) for 30-60 minutes for 
liquefaction. Then, macroscopic (ejaculate appearance, 
viscosity, pH, and volume) and microscopic (spermatozoa 
concentration, motility, vitality, aggregation, and 
morphology in semen) evaluations were done according 
to the WHO laboratory manual (1).

All semen samples were treated (the purification 
step) to remove cells other than spermatozoa by loading 
each sample onto 40%–80% discontinuous PureSperm 
gradients (Nidacon International, Sweden) and then 
centrifuged at 500 x g for 20 minutes at room temperature. 
The upper layer was aspirated until the ring without any 
touching of the pellet. Next, the pellet was re-suspended 
in 1 mL of G-IVF Plus medium (Vitrolife, Sweden) and 
then centrifuged (330 x g/10 min). The supernatant was 
eliminated and the pellet was suspended in 0.5 mL of 
G-IVF Plus medium (Vitrolife, Sweden) and kept in an 
incubator (6% CO2, 37°C) for at least two hours before 
ICSI.

Sperm Chromatin Condensation Assay (Chromomycin 
A3 Assay)
For the sperm DNA condensation assessment, the 
Chromomycin A3 assay, as described by Hammadeh et al 
was used but with some modifications. 

The first step was fixation, namely, putting the slides 
in methanol-glacial acetic acid (3:1) for 1 hour and then 
leaving them to air-dry at room temperature. To each 
slide, 25 µL of CMA3 stain solution was added and the 
slide was then incubated in the dark for 30 minutes at 
room temperature. After awash with PBS buffer, the 
slides were mounted and then kept overnight at 4°C in 
the dark. On each slide, 200 spermatozoa were evaluated 
using a fluorescence microscope (Olympus, Japan): bright 

green spermatozoon represents a low protamination state 
(CMA3 positive) and dull green spermatozoa are CMA3 
negative. 

Sperm DNA Fragmentation TUNEL
A Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay was used for the sperm DNA 
fragmentation assessment, as previously described by 
Borini et al. 

The first step was the fixation of smears in slides with 
4% paraformaldehyde (Sigma-Aldrich, Germany) for 2 
hours at room temperature. Then in the permeabilization 
step, the smears were incubated with 0.1% Triton for 15 
minutes at room temperature. To each slide, 25 μL of the 
TdT-labelled nucleotide mixture was added and then the 
slide was incubated overnight at 37°C in a humidified 
chamber. The slides were then washed with PBS. After 
that, 25 μL of DAPI (Sigma-Aldrich, Germany) was 
added to each slide as a counter stain. On each slide, 
200 spermatozoa were evaluated using a fluorescence 
microscope (Olympus, Japan) via a combination of exciter 
dichromic barrier filter of BP 436/10: FT 580: LP 470: 
green-stained spermatozoa are TUNEL-positive whereas 
blue-stained spermatozoa are TUNEL-negative.

ICSI Procedure and Embryo Evaluation 
After 3-4 hours of oocyte retrieval, a decoronation of the 
cumulus-corona oocyte cell complex was performed using 
hyaluronidase (SynVitro Hyadase, Origio, Denmark) and 
the intracytoplasmic sperm injection (ICSI) was given for 
metaphase II oocytes using a micromanipulation system 
(Narishige, Japan) and an inverted microscope (Zeiss, 
Germany) (Figure 1).

For embryo culture and assessment, the microdrop 
culture system and the Embryo Scope time-lapse incubator 
(Vitrolife, Sweden) were used. After injection, the oocytes 
were distributed in an Embryo Slide culture dish (Vitrolife, 
Sweden) that could hold 12 embryos. In each well of the 
dish, 25 µL of global total culture medium (Life Global, 
Canada) was added. The incubation conditions were: 
Temperature = 37°C, 5.5% Oxygen (O2) and 5.5% carbon 
dioxide (CO2).

The embryo quality grade was assessed on day 3 after 

Figure 1. Intracytoplasmic sperm injection (ICSI) Day; (a) A cumulus-
corona oocyte cell complex, (b) Denuded Metapahse II (MII) Oocyte.

 

(a) (b)
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the injection (the cleavage stage) according to the division 
symmetry, the cytoplasmic fragmentation proportion 
(Grade 1: 0-10% of cytoplasm fragmented, Grade 2: 11-
20% of cytoplasm fragmented, grade 3: >20 of cytoplasm 
fragmented) (9) using the EmbryoViewer Software 
(Vitrolife, Sweden) (Figure 2).

The embryo quality was also assessed on day 4 
(Morula stage) (Figure 3) and day 5 (Blastocyst stage), 
using Gardner’s blastocyst grading scale and including 
expansion, inner cell mass (ICM) and trophectoderm 
epithelium (TE) (10) (Figure 4).

In 30% of the cases the embryo was transferred in the 
cleavage stage and in 70% in the blastocyst stage. The 
average of embryo transfer was 2 embryos/patient.

Statistical Analysis
Data were analyzed using the IBM SPSS for Windows 
software package version 24.0, USA. The descriptive 
statistics of the different studied parameters were expressed 
as mean ± standard deviation (M ± SD). The samples were 
not-normally distributed. The Mann-Whitney U test was 
therefore applied to compare the continuous variables 

 (a) (b) (c) (d)

Figure 2. Embryo cleavage stages after ICSI; (a) Fertilized oocyte (Zygote) 
with 2 polar bodies and 2 central equal pronuclei (PNs) (18 h post-ICSI), 
(b): A 2-blastomeres human embryo (Day 1 post-ICSI), (c): A 4-blastomeres 
human embryo (Day 2 post-ICSI), (d): A 8-blastomeres human embryo 
(Day 3 post-ICSI).

Figure 3. Progressive compaction of human embryo on day 4 post-ICSI 
leading to the formation of morula.

Figure 4. Blastocyst formation (Day 4-5 post-ICSI); (a) Human embryo with 
early cavitation, (b) Early blastocyst, (c) Expanded blastocyst.

(a) (b)

 

and the Spearman correlation test was used to determine 
the correlation between the different studied parameters. 
The association degree was described by the correlation 
coefficient (r), the P value ≤ 0.05 was considered to be 
statistically significant and P < 0.01 was considered to be 
statistically highly significant. 

Results
The Characteristics of the Study Population
Table 1 provides a summary of the statistical analysis of 
the sperm parameters, protamine deficiency, sperm DNA 
fragmentation, and ICSI outcomes. The means ± SD of 
the sperm volume, sperm concentration, total motility, 
progressive motility, and morphologically normal 
spermatozoa were (3.33 ± 1.57 (mL), 79.03 ± 59.68 (106/
mL), 42.80 ± 20.99%, 20.55 ± 17.17%, 6.94 ± 8.40% 
respectively). The CMA3+ had a mean value of 
29.35 ± 20.86% and the sperm DNA fragmentation (sDF) 
had a mean value of 22.89 ± 18.85%.

The mean percentage of the fertilization rate was 
79.04 ± 19.85%. The mean values of the number of cleaved, 
grade 1 (G1), and grade 2 (G2) embryos were 6.65 ± 4.74, 
2.83 ± 2.48, 1.87± 0.56. The embryo mean grade score was 
1.87 ± 0.56 and the mean pregnancy rate was 0.45 ± 0.5%.

A Comparison of the Studied Parameters Between the 
Non-smokers and the Heavy-Smokers
The patients were later divided, according to their smoking 
status, into 2 groups, namely, non-smokers (n = 43) and 
heavy-smokers (n = 98).

By comparing the semen parameters between the 2 
groups (Table 2), we found that the mean concentration 
and the total motility were significantly higher in the 
non-smoker group (P = 0.014, and P = 0.026 respectively) 
and found similar results for the mean percent of the 

Table 1. Descriptive Statistics of Studied Parameters for All Patients 
(n = 141)

Parameters Mean ± SD

Semen volume (mL) 3.33 ± 1.57

Sperm concentration (106 per mL) 79.03 ± 59.68

Total motility (%) 42.80 ± 20.999

Progressive motility (%) 20.55 ± 17.17

Morphologically normal spermatozoa (%) 6.94 ± 8.40

Protamine deficiency (CMA3+) (%) 29.35 ± 20.86

Sperm DNA fragmentation (sDF) (%) 22.89 ± 18.85

Fertilization rate (%) 79.04 ± 19.85

Number of cleaved embryos 6.65 ± 4.74

Number of grade 1embryos (G1) 2.34 ± 2.56

Number of grade 2 embryos (G2) 2.83 ± 2.48

Embryos‘ grade score 1.87 ± 0.56

Pregnancy rate (%) 0.45 ± 0.5

SD: standard deviation
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progressive motility and normal morphology (P = 0.0001). 
Furthermore, the mean percentage of protamine 

deficiency (CMA3+) in the group of non-smokers was 
significantly lower in comparison to that of the heavy-
smokers (20.35 ± 13.34 vs. 33.30 ± 22.33, P = 0.001). 
The mean percentage of sDF showed a high difference 
between the non-smoker group and heavy-smoker one 
(14.23 ± 13.07 vs. 26.68 ± 19.77, P = 0.0001).

Moreover, except for the pregnancy rate, which was 
significantly higher in the group of non-smokers than in 
that of the heavy-smokers (0.60 ± 0.49% vs. 0.38 ± 0.48%; 
P = 0.013), there were no significant differences in the 
other clinically investigated parameters (fertilization rate, 
number of cleaved embryos, number of grade 1 (G1) and 
grade 2 (G2) embryos and the embryos’ grade score) 
between the two groups (Table 3).

Correlation Between the Different Sperm Parameters and 
Protamine Deficiency 
In the heavy-smokers group (Table 4), the mean percentage 
of the sperm concentration correlated positively with the 
mean percentages of total motility, progressive motility, 
and morphologically normal spermatozoa (r = 0.294, 

r = 0.515, r = 0.531; P < 0.01) but correlated negatively 
with the protamine deficiency (r = -0.233, P = 0.021). The 
total and progressive motility showed a high positive 
correlation with the mean of morphologically normal 
spermatozoa (r = 0.439, r = 0.583 respectively; P = 0.0001). 
In addition, a significant correlation (r = 0.484, P = 0.0001) 
between CMA3+ and sDF was shown (Table 4).

Table 5 illustrates the correlations between the mean 
percentage of the different sperm parameters, the 
protamine deficiency (CMA3+) and sDF in the non-
smokers group. The semen volume correlated negatively 
with the concentration (r = -0.338, P = 0.027) but the 
mean percentage of total motility correlated positively 
with the mean percentage of morphologically normal 
spermatozoa (r = 0.663, P = 0.0001) and negatively with 
the mean percentage of sDF (r = -0.304, P = 0.048). In 
addition, the progressive motility correlated positively 
with morphologically normal spermatozoa (r = 0.830, 
P = 0.0001) but negatively with the mean percentage 
of sDF (r = -0.304, P = 0.047). In addition, the mean 
percentage of morphologically normal spermatozoa 
showed a significant negative correlation with the mean 
percentage of sDF (r = -0.361, P = 0.017).

Correlation Between Protamine Deficiency and ICSI 
Results
In the non-smokers group (Table 6), the mean percentage 
of the sperm DNA fragmentation correlated positively 
with the number of cleaved embryos (r = 0.394, P = 0.009), 
the number of grade 1 embryos (r = 0.341, P = 0.025) and 
the number of grade 2 embryos (r = 0.316, P = 0.039). 
However, the remaining parameters showed no significant 
difference.

Table 7 shows that in the heavy-smokers group, neither 
the mean percent of CMA3+ nor sDF correlate with the 
clinical parameters after ICSI.

Discussion
Several lifestyle behaviours, such as nutrition, sport, 
drinking alcohol and tobacco smoking, are reported to 

Table 2. Comparison of the Semen Analysis Parameters Between Non-smokers and Heavy-Smokers

Parameter (Unit) Non-smokers (n=43)
Mean ± SD

Heavy-smokers (n=98)
Mean ± SD P Value

Semen volume (mL) 3.71 ± 1.76 3.17 ± 1.46 0.181

Sperm concentration (106 per mL) 98.56 ± 64.63 70.46 ± 55.59 0.014*

Total motility 48.42 ± 21.83 40.34 ± 20.25 0.026*

Progressive motility 31.42 ± 22.24 15.78 ± 11.66 0.0001**

Morphologically normal spermatozoa ( %) 12.91 ± 12.76 4.32 ± 2.93 0.0001**

Protamine deficiency (CMA3+) (%) 20.35 ± 13.43 33.30 ± 22.33 0.001**

Sperm DNA fragmentation (sDF) (%) 14.23 ± 13.07 26.68 ± 19.77 0.0001**

SD: standard deviation.
**Correlation is highly significant at the 0.01 level (P < 0.01).
*Correlation is significant at the 0.05 level (P < 0.05).

Table 3. Comparison of the ICSI-Outcomes Between Non-smokers and 
Heavy-Smokers

Parameter (Unit)
Non-smokers 

(n=43)
Mean ± SD

Heavy-smokers 
(n=98)

Mean ± SD

P 
Value

Fertilization rate (%) 78.23 ± 19.48 79.40 ± 20.10 0.691

Number of cleaved 
embryos 6.70 ± 4.75 6.63 ± 4.76 0.923

Number of grade 1 
embryos (G1) 2.67 ± 2.93 2.19 ± 2.39 0.567

Number of grade 2 
embryos (G2) 2.49 ± 2.31 2.98 ± 2.55 0.195

Embryos grade score 1.99 ± 0.61 1.82 ± 0.54 0.229

Pregnancy rate (%) 0.60 ± 0.49 0.38 ± 0.48 0.013*

SD: standard deviation.
*Correlation is significant at the 0.05 level (P ≤ 0.05).
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have an influence on both male and female reproductive 
health, and, in a number of cases, they may even have an 
effect on epigenetic mechanism alterations, which may be 
associated with major common human maladies (11,12).

Around 46% of males of reproductive age between 20- 
and 39-years-old are cigarette smokers (13). Almost 75% 
of the men that are daily smokers live in countries that 
have a medium or high human development index (14).

For this reason, we focused, in this current study, on 
the influence of paternal tobacco smoke on the male 
reproductive function: sperm parameters, sperm DNA 
maturity and ICSI outcomes.

In this study, we found in our heavy-smokers group 
(n = 98) a significant decrease (P<0.01) in standard semen 

parameters, namely, sperm concentration, total motility, 
progressive motility, and sperm normal morphology, in 
comparison to our non-smokers group (70.46 ± 55.59 
106/mL vs. 98.56 ± 64.63 106/mL, 40.34 ± 20.25 % vs. 
48.42 ± 21.83%, 15.78 ± 11.66 % vs. 31.42 ± 22.24% and 
4.32 ± 2.93% vs. 12.91 ± 12.76 % respectively) (Table 2).

These results are in accordance with various other 
studies that reported that the toxic elements in tobacco 
smoking had negative effects on semen quality (15-18). 
The Practice Committee of the American Society for 
Reproductive Medicine also reported in 2012 that the 
relationship between tobacco consumption and reduced 
sperm parameters is a dose-response relationship (19). 
In a meta-analysis, Sharma et al concluded that smoking 

Table 4. Correlation Between the Investigated Sperm Parameters and Protamine Deficiency (CMA3+) in the Heavy-Smokers Group (n=98)

Semen 
volume 

(mL)

Sperm
concentration
(106 per mL)

Total 
motility (%)

Progressive 
motility (%)

Morphologic-
ally normal 

spermatozoa 
(%)

CMA3+ 
(%) sDF (%)

Semen volume (mL)
r 1.000 -0.042 0.004 -0.024 0.097 -0.117 -0.029
P 0.681 0.965 0.812 0.343 0.251 0.776

Sperm concentration (106 per 
mL)

r -0.042 1.000 0.294** 0.515** 0.531** -0.233* -0.263**

P 0.681 0.003 0.0001 0.0001 0.021 0.009

Total motility (%)
r 0.004 0.294** 1.000 0.677** 0.439** 0.133 0.101

P 0.965 0.003 0.0001 0.0001 0.193 0.321

Progressive motility (%)
r -0.024 0.515** 0.677** 1.000 0.583** -0.097 -0.063

P 0.812 0.0001 0.0001 0.0001 0.340 0.534

Morphological-ly normal 
spermatozoa (%)

r 0.097 0.531** 0.439** 0.583** 1.000 -0.140 -0.177

P 0.343 0.0001 0.0001 0.0001 0.169 0.081

 CMA3+ (%)
r -0.117 -0.233* 0.133 -0.097 -0.140 1.000 0.484**

P 0.251 0.021 0.193 0.340 0.169 0.0001
**Correlation is highly significant at the 0.01 level (P < 0.01).
*Correlation is significant at the 0.05 level (P ≤ 0.05).

Table 5. Correlation Between the Different Sperm Parameters and Protamine Deficiency (CMA3+) in the Non-smoker Group (n=43)

Semen 
volume (mL)

Sperm 
concentration 
(106 per mL)

Total motility

(%)

Progressive 
motility ( %)

Morphologica-
lly normal 

spermatozoa (%)

CMA3+ (%)
sDF (%)

Semen volume (mL)
r 1.000 -0.338* 0.184 0.242 0.227 0.147 -0.113
P 0.027 0.237 0.117 0.142 0.345 0.469

Sperm concentration (106 

per mL)
r -0.338* 1.000 0.159 0.107 0.110 -0.240 -0.297

P 0.027 0.309 0.494 0.481 0.121 0.053

Total motility (%)
r 0.184 0.159 1.000 0.874** 0.663** 0.037 -0.304*

P 0.237 0.309 0.0001 0.0001 0.815 0.048

Progressive motility (%)
r 0.242 0.107 0.874** 1.000 0.830** 0.018 -0.304*

P 0.117 0.494 0.0001 0.0001 0.907 0.047

Morphologic-ally normal 
spermatozoa (%)

r 0.227 0.110 0.663** 0.830** 1.000 -0.146 -0.361*

P 0.142 0.481 0.0001 0.0001 0.350 0.017

CMA3+ (%)
r 0.147 -0.240 0.037 0.018 -0.146 1.000 0.256
P 0.345 0.121 0.815 0.907 0.350 0.098

**Correlation is highly significant at the 0.01 level (P < 0.01).
*Correlation is significant at the 0.05 level (P ≤ 0.05).



Amor et al

International  Journal of Women’s Health and Reproduction Sciences, Vol. 7, No. 4, October 2019456

had a generally negative influence on standard semen 
parameters and that this was generally more obvious in 
infertile male patients than in the common population 
because their spermatozoa are probably more sensitive to 
the inhaled toxic chemicals (20).

Nevertheless, other studies reported that smoking had 
no meaningful effect on conventional sperm parameters 
(21-24). Further studies at the molecular level are therefore 
needed to find out how tobacco smoking affects sperm 
function and to shed more light on the clinical condition.

The main causes of DNA alteration were reported to 
be the defective repair of double or single-stranded DNA 
breaks caused by topoisomerase II during chromatin 
remodelling (25), abortive apoptosis (26), aberrant 
protamination (27-29), the abnormal expression of 
transition proteins (30-32), interaction between toxic 
chemicals and/or heavy metals with protamines (33), and 
oxidative stress (34).

In the last decade, more studies have been focused on 
the mechanisms by means of which environmental and 
lifestyle factors, especially smoking, have an influence 
on the sperm genome and epigenome (35) and have a 
potential effect on the developing embryo (8, 36).

Tobacco smoking is in fact associated with high levels of 
seminal reactive oxygen species (ROS) causing oxidative 
DNA damage (37-40). It has also been reported that 
tobacco smoke contents are correlated with DNA adduct 
formation leading to DNA damage (41,42).

The following two techniques were used in the current 
study to evaluate the sperm DNA integrity: TUNEL for sDF 
assessment, and CMA3 staining for protamine deficiency 
(CMA3+) assessment. In the heavy-smokers group, the 
mean percentage of sDF and CMA3+ were significantly 

higher (P < 0.01) than that of the non-smokers group 
(26.86 ± 19.77% vs.14.23 ± 13.07% and 33.30 ± 23.33% vs. 
20.35 ± 13.43% respectively) (Table 2). 

These results are in line with a number of studies that 
used different techniques for the determination of sperm 
DNA fragmentation. Most of the human researches using 
a TUNEL assay demonstrated that the levels of DNA 
fragmentation in smokers was higher than in non-smokers 
(24,37,43). Similar results were found in other studies 
using different techniques to evaluate DNA fragmentation 
(15,44-46). Contradictory studies, however, have 
concluded that there is no correlation between smoking 
and DNA damage (47,48).

On the other hand, a significant positive correlation 
has been found between protamine deficiency (CMA3+) 
and DNA fragmentation (sDF) (r = 0.484, P = 0.0001) 
in the group of heavy-smokers (Table 4), but there was 
no correlation (r = 0.256, P = 0.098) between these 2 
parameters in the non-smokers group (Table 5). Similar 
results have been demonstrated by other groups who 
reported that abnormal protamination leads to abnormal 
chromatin condensation and raises the sensitivity of 
sperm DNA to external stress causing an oxidative attack 
(37,49-51). 

In the heavy-smokers group (Table 4), the mean 
percentage of the sperm concentration correlated 
negatively with the protamine deficiency CMA3+ 
(r = -0.233, P = 0.021) and the sDF (r = -0.263, P = 0.009). A 
similar situation was observed in the non-smokers group 
(Table 5), with the sperm DNA fragmentation sDF being 
correlated negatively with the mean percentage of total 
motility (r = -0.304, P = 0.048), the mean of progressive 
motility (r = -0.304, P = 0.047) and the mean percentage 

Table 6. Correlation Between Protamine Deficiency (CMA3 positivity), Sperm DNA Fragmentation and ICSI Results in Non-smokers Group (n=43)

Fertilization 
Rate (%)

Number of Cleaved 
Embryos

Number of Grade 
1 Embryos

Number of Grade 
2 Embryos

Embryo Grade 
Score

Protamine deficiency 
(CMA3+) (%)

r 0.039 -0.037 0.186 -0.235 -0.107

P 0.805 0.813 0.232 0.130 0.496

Sperm DNA fragmentation 
(sDF) (%)

r 0.077 0.394** 0.341* 0.316* -0.045

P 0.624 0.009 0.025 0.039 0.773

**Correlation is highly significant at the 0.01 level (P < 0.01).
*Correlation is significant at the 0.05 level (P ≤ 0.05).

Table 7. Correlation Between Protamine Deficiency (CMA3 positivity), Sperm DNA Fragmentation and ICSI Results in Heavy-Smokers Group (n=43)

Fertilization 
Rate (%)

Number of Cleaved 
Embryos

Number of Grade 
1 Embryos

Number of Grade 
2 Embryos

Embryo Grade 
Score

Protamine deficiency 
(CMA3+) (%)

r 0.152 0.082 0.009 0.061 0.145

P 0.135 0.421 0.929 0.550 0.153

Sperm DNA fragmentation 
(sDF) (%)

r 0.050 0.117 0.086 -0.007 0.034

P 0.625 0.252 0.402 0.946 0.736

**Correlation is highly significant at the 0.01 level (P < 0.01).
*Correlation is significant at the 0.05 level (P ≤ 0.05).
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of morphologically normal spermatozoa (r = -0.361, 
P = 0.017). These results support the claim that sperm 
DNA damage has a negative influence on sperm quality, 
thereby confirming earlier studies (52-54). 

However, a number of studies have not succeeded in 
demonstrating a relationship between traditional seminal 
parameters and sperm DNA damage (24,37,55).

Moreover, the use of different techniques to measure 
alterations in sperm DNA has been a controversial 
issue in the field of assisted reproduction field. Bungum 
et al demonstrated that the pregnancy rate after 
intrauterine insemination (IUI) decreased when the DNA 
fragmentation index (DFI) was higher than 20% (56). 
In other studies, it was concluded that couples who did 
not become pregnant after IVF treatment had a DNA 
fragmentation higher than 25% and their embryo quality 
correlated negatively with sDF (57). According to a study 
conducted by Oleszczuk et al, DFI above 40% is correlated 
with a danger of early miscarriage (58).

In the present study, by comparing the clinical 
investigated parameters between the heavy-smokers 
group and the non-smokers group, the pregnancy rate 
was seen to be significantly higher in the group of non-
smokers than in the heavy-smokers group (0.60 ± 0.49% 
vs. 0.38 ± 0.48%; P = 0.013) but other parameters showed 
no significant differences (Table 3). This is similar to 
the results of a study done on couples that had a normal 
conception but the male partner was a smoker; this 
study demonstrated that smoking has negative effects on 
fecundity and the time-to-pregnancy in a dose-dependent 
manner (59).

Low fecundity in smokers has also been reported 
to be related to acrosin activity (60). The correlation 
between smoking and the sperm’s ability to fertilize the 
oocyte was also studied by Sofikitis and colleagues, who 
demonstrated that smoking correlates negatively with the 
sperm’s potential to fertilize the oocyte (61). 

Furthermore, toxic elements resulting from tobacco 
combustion have been proved to decrease the mitochondrial 
activity and cause impairment in chromatin organization 
and, as a result, alter the fertilization capability (12,62).

In the present study, in the heavy-smoker group, the 
fertilization rate, the number of cleaved embryos, the 
number of grade 1 embryos, the number of grade 2 
embryos, and the embryos’ grade score had a correlation 
neither with the mean percentage of protamine deficiency 
(CMA3+) nor with sperm DNA fragmentation (sDF) 
(Table 7). 

These results are in agreement with other studies, 
which reported no significant correlation between the 
fertilization rate, the quality of the embryo and pregnancy 
rates after IVF or ICSI (63-66).

Henkel et al showed that there was no correlation 
between DNA fragmentation (TUNEL test) and the 
fertilization rate. Similar results had been found earlier by 
Benchaieb et al, who found no correlation between DNA 

fragmentation (TUNEL assay) and embryo quality (67). 
In both groups, however, it was shown that sperm DNA 
damage has a negative impact on pregnancy, and, more 
recently, Amiri-Yekta et al came to the same conclusion 
(68).

In contrast, in the non-smoker group, the mean 
percentage of the sDF correlated positively with the 
number of cleaved embryos (r = 0.394, P = 0.009), the 
number of grade 1 embryos (r = 0.341, P = 0.025), and the 
number of grade 2 embryos (r = 0.316, P = 0.039) (Table 
6). This coincides with the results from a study, conducted 
by Payne and colleagues, in which they demonstrated that 
the higher the sperm DNA fragmentation is, the higher 
the pregnancy result is (69). This contradiction can be 
explained by the fact that, after fertilization, a good quality 
oocyte is capable of repairing the sperm DNA damage (70) 
but, if not, this can have a negative impact on the embryo 
development (71,72).

In conclusion, the current study strongly suggests 
that CMA3 staining and TUNEL measuring of the 
sperm’s DNA alterations (compaction and fragmentation 
respectively) caused by various factors, such as tobacco 
smoking, may be useful as supplementary tests before any 
ART treatment to ensure a good prognosis especially in 
cases of idiopathic infertility and repetitive miscarriage. 
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